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Abstract— As equality issues in the use of face recognition
have garnered a lot of attention lately, greater efforts have been
made to debiased deep learning models to improve fairness
to minorities. However, there is still no clear definition nor
sufficient analysis for bias assessment metrics. We propose an
information-theoretic, independent bias assessment metric to
identify degree of bias against protected demographic attributes
from learned representations of pretrained facial recognition
systems. Our metric differs from other methods that rely
on classification accuracy or examine the differences between
ground truth and predicted labels of protected attributes
predicted using a shallow network. Also, we argue, theoretically
and experimentally, that logits-level loss is not adequate to
explain bias since predictors based on neural networks will
always find correlations. Further, we present a synthetic dataset
that mitigates the issue of insufficient samples in certain cohorts.
Lastly, we establish a benchmark metric by presenting advan-
tages in clear discrimination and small variation comparing
with other metrics, and evaluate the performance of different
debiased models with the proposed metric.

I. INTRODUCTION

The social impact of deep learning has been under scrutiny
with the recent rapid developments in many application
domains, such as face recognition [37] being used in surveil-
lance and security [42]. One of the major concerns is
demographic bias of deep learning systems with respect to
protected attributes, such as sex [6], race [31] or age [12].
The bias is reflected in the unequal algorithmic accuracy for
different demographic groups, such that in facial recogni-
tion systems, black females are less likely to be correctly
recognized than white males [6] and people of color tend
to be mistakenly recognized than people of European ori-
gin [11]. Bias issues, hampering generalization for facial
recognition systems, are in part due to the end-to-end nature
of training deep learning systems, which primarily focuses on
minimizing empirical loss in order to maximize recognition
accuracy at the expense of encouraging the model to exploit
the information from protected attributes.

Mitigating bias, commonly referred to as debiasing in face
recognition literature, has, therefore, garnered tremendous
interest [28, 6, 40]. Without loss of generality, methods
addressing algorithmic bias can be grouped into two families.
First, a group of methods that attempt to mitigate bias by
improving the diversity and inclusion of training datasets by
resampling [28] or adding diversity [44, 38, 6]. Second, a
group of methods that attempt to explicitly produce models
that factor in protected attribute information to close the per-
formance gap between different demographics [38, 15, 40].

Fig. 1: We propose an information-theoretic model to assess the bias
involving protected attributes in facial recognition systems. Our approach
directly establishes the correlation between learned representation R and
protected attributes Z with mutual information without relying on any
predictors at the logits level.

Meanwhile, adopting a precise, universally applicable and
acceptable metric for the degree of bias is both intrinsically
difficult and important. Without loss of generality, three
main approaches for bias assessment are based on either (1)
classification accuracy across cohorts [2, 35, 38], (2) infor-
mation leakage from protected attributes to prediction logits
of labels [16, 45, 40], or (3) estimated correlations between
prediction logits and protected attributes using shallow clas-
sifiers [28, 41, 20]. Classification accuracy-based bias assess-
ment metrics may not be accurate because accuracy across
cohorts must be listed and compared together. Moreover,
information leakage-based methods, such as Demographic
Parity, Equality of Odds, and Equality of Opportunity [16]
strictly define fairness of a classification model as the inde-
pendence between protected attributes and prediction logits
of labels, which may not be appropriate to compare debiased
models directly, as discussed in Section IV-A. Besides, quan-
titative metrics, relying on estimated correlations [18] using
a shallow predictor, may find correlations even in unbiased
data and would then mistakenly identify them as biased, as
discussed in Section IV-B. Further, most of proposed bias
assessment metrics are rarely used to evaluate other debiased
models, as a mean to show universality. To the best of our
knowledge, there is no universal way to assess the degree of
bias for existing debiased models as these models have been
evaluated on different benchmarks under varying conditions.

Prior work [2, 15, 38] mainly focus on bias mitigation
instead of bias assessment, particularly neglecting represen-
tation/embedding level bias. Therefore, we propose an effec-
tive representation-level method to assess the demographic
bias of any pretrained backbone (possibly debiased) facial
recognition systems and design a series of experiments as a
protocol to validate the rationality and effectiveness of bias
assessment metrics in face recognition. We use entropy to
assess dataset bias and mutual information to assess model
bias from learned representation extracted by backbone mod-978-1-6654-3176-7/21/$31.00 ©2021 IEEE



els, rather than simply establishing correlations by training a
shallow predictor using logits, as illustrated in Fig. 1. We
combine dataset bias and representation-level model bias
to comprehensively assess the percentage of remaining bias
after a debiased backbone model, given the overall dataset
bias. In other words, large remaining bias represents inferior
debiasing performance. In this respect, our method can also
help assess the bias using representations/embeddings in a
layer-by-layer fashion inside any model. The proposed metric
is not intended to be combined with other debiasing methods,
but to actually independently evaluate debiasing methods as
shown in Section V-E. The effectiveness of our method is
verified with experiments on Colored MNIST [26], Fair-
Face [21], CelebA [29] and synthetic datasets generated by
StyleGAN2 [23]. Our key contributions can be summarized
as follows:

• Theoretical and empirical arguments that bias assess-
ment should be applied at the representation level
instead of the logits level.

• An independent bias assessment metric at the represen-
tation level to help study bias mitigation.

• A performance evaluation for a wide range of debiasing
techniques using the proposed independent metric.

• A synthetic dataset that mitigates the issue of insuffi-
cient samples in certain subsets.

• A categorization of different bias metrics.

II. RELATED WORK

Protected attributes. Protected attributes are qualities,
traits or characteristics that, by law, cannot be discriminated
against [33]. Many studies [7, 36, 14] show that facial
recognition systems have divergent recognition accuracy for
different demographic groups. Meanwhile, using existing
datasets [29, 30], which are dominated by sufficient samples
in specific racial or sex groups, may also lead to unfairness
against specific such groups.
Debiasing face recognition. The fairness of face recognition
may be dramatically impacted by the bias issues in existing
datasets in terms of the long-tail distribution [46] of demo-
graphic groups. To address bias issues, some studies intro-
duce fairness into face recognition to mitigate demographic
bias. The mainstream debiasing models belong to either
(1) strategic sampling method [28] via oversampling or re-
weighting to keep the training data balanced across cohorts,
(2) representation disentanglement methods [12, 2, 19] to
remove the specific demographic attribute by adversarial
training, (3) domain adaptation methods [38, 15] for learning
demographic-group invariant representations by maximizing
the recognition performance of identity and minimizing the
capability to predict protected attributes using a discrimina-
tion loss, or (4) domain independent training method [40] by
learning an ensemble that constitutes separate classifiers per
demographic group with representation sharing.
Bias assessment metrics. While many debiased models
have been developed for face recognition, there has been
limited progress in establishing an objective, quantitative and
universally acceptable bias assessment metric. In particular,

most of bias assessments rely on cross-cohort-terms based on
classification accuracy [2], False Positive Rate (FPR) [43],
Receiver Operating Characteristic (ROC) [15] and Area
under the ROC Curve (AUC) [38]. Besides, information
leakage from protected attributes to predicted labels has also
been used to assess bias. For example, Demographic Parity,
Equality of Odds, and Equality of Opportunity [16] use inde-
pendence between protected attributes and prediction logits
of labels to define fairness. Likewise, the difference between
dataset leakage (i.e. the predictability of sex from ground
truth labels) and model leakage (i.e. the predictability of sex
from model predictions) [39] have also been used to assess
the bias. Similarly, bias amplification [45] is defined as the
difference of bias score (i.e. the percentage of occurrences of
a given outcome and a demographic variable in the corpus)
between training data and testing data. Moreover, several bias
assessment metrics based on the estimated correlation using
a shallow network at the logits level have been proposed. For
example, dataset bias [28, 27] captures the bias of a dataset,
measured by the classification performance with the cross
entropy loss. More generally, the metric used in [41, 20]
assesses bias based on prediction logits to predict protected
attributes from representations. However, all aforementioned
metrics are implicitly or explicitly based on accuracy or
logits loss after the predictor at the logits level instead of the
representation/embedding level, and therefore we call them
logits-level bias assessment metrics.

Distance correlation dcor2 [34] has been used to assess
the bias at the representation level in [1] . However, in [1],
the usage of distance correlation only considers model bias
from the representations without a correction of dataset bias
if the distribution of protected attributes varies as discussed
in Section V-B, and yields more variation than our proposed
metric as discussed in Section V-E.

III. REPRESENTATION-LEVEL BIAS ASSESSMENT

As discussed in Section II, most of the existing bias
assessment methods depend on training shallow predictors
that could overfit to spurious correlations between the input
data and protected attributes, as illustrated in Fig. 1. Our
goal is therefore to develop an independent (i.e. method-
agnostic) bias assessment metric which can be applied at
the representation/embedding level of pretrained (possibly
debiased) models, and considers training dataset bias.

Consider a face recognition task for which, given a dataset
D containing instances (xi, yi, zi), where xi ∈ X is an
image annotated with a set of task-specific labels yi ∈ Y
(e.g. identity), and other protected attributes zi ∈ Z (e.g.
sex1), the representation learning network Fθ : X → R
parametrized by θ ∈ Θ first produces a learned representation
ri ∈ R, and then a classifier Cϕ : R → Y ′ with parameters
ϕ ∈ Φ produces the predicted label y′i ∈ Y ′. The learned
representation ri ∈ R produced by representation learning
sub-network Fθ may contain information about zi, due to the

1In this paper, due to the available annotations, we assume that sex is
binary, but the work can be extended to non-binary sex annotations.



end-to-end nature of training, which encourages models to
exploit any information (including protected attributes) if it
leads to lower empirical loss. Demographic parity (DP) [16]
seeks to find information leakage between Z and Y ′.
Definition 1: DEMOGRAPHIC PARITY. A classification
model T̂ is said to satisfy demographic parity if predicted
label Y ′ = T̂ (X) and protected attribute Z are independent.

However, DP does not completely ensure fairness [10]
since the logits-level parity can arise naturally when there
is little training data for one protected attribute zi, and may
impair the achievable utility of better classification accuracy
since some correct predictions may contradict DP in general
if the testing dataset is not strictly balanced, which will be
further elaborated in Section IV-A. In order to overcome
these drawbacks, we therefore propose:
Definition 2: REPRESENTATION-LEVEL DEMO-
GRAPHIC PARITY. A classifier T̂ is said to satisfy
representation-level demographic parity if learned
representation R̂ = F̂ (X) and protected attribute Z
are independent.

Representation-level demographic parity means that for
all values of the protected attributes Z: P (F̂ (X) = r̂) =
P (F̂ (X) = r̂|Z = z) where F̂ is a representation learning
sub-network. Mutual information (MI) which is widely used
in representation disentanglement and debiasing [38, 24, 32],
is then a natural approach for assessing the mutual de-
pendence between R and Z , and produce an information-
theoretic fairness score. Independence is achieved when
the representation space R contains no information about
protected attributes Z . More generally, we can say that
B ∝ I(R,Z), where B is the representation-level bias and
I is mutual information.

Facial recognition bias [37] stems from a biased trained
model Tbiased and/or an imbalanced training dataset Dbiased.
Representation-level bias reveals the degree of bias for the
model Tbiased reflected in the learned representation R
extracted by the feature extraction sub-network F inside
Tbiased. We use mutual information between R and Z to
estimate the representation-level bias for the biased trained
model Tbiased, i.e. I(R,Z). Furthermore, since a more
imbalanced training dataset leads to more bias in the trained
model, we use the entropy of Z to assess the imbalance of the
dataset Dbiased, i.e. H(Z). Greater entropy implies a more
balanced dataset. Therefore, we define the representation-
level bias as follows.
Definition 3: REPRESENTATION-LEVEL BIAS (RLB).
The representation-level bias B of a classification model T
trained with a dataset D, with respect to protected attribute
Z, is defined as,

B(R,Z) =
I(R,Z)

H(Z)
, (1)

where H(Z) is the entropy of Z, estimated empirically by:

H(Z) = − 1

|Z|
∑
z∈Z

log Pz, (2)

and I(R,Z) is the mutual information between R and Z,
estimated based on Definition 3.1 in [5]:

I(R,Z) = sup
θ∈Θ

EPRZ [Tθ]− log(EPR⊗PZ [e
Tθ ]), (3)

which estimates MI by training a neural network Tθ to
distinguish between joint samples PRZ and the product of
marginals PR⊗PZ , of random variables R and Z. The ratio
B is bounded ([0, 1]) and easy to interpret, rather than the
uncertain and negative range for mutual information minus
entropy (since entropy is greater than mutual information).
Mutual information neural estimation (MINE) [5] offers a
lower-bound based on the Donsker-Varadhan representa-
tion [9] of KL-divergence.

We improve the mutual information estimate of [5] by
adding a mapping network followed by the statistics network
to improve the robustness. Given a pair of (r, z) ∈ (R,Z),
the non-linear mapping networks fλ1

: R → W and fλ2
:

Z → S first produce w ∈ W and s ∈ S . The mapping
networks fλ1 and fλ2 are implemented using one fully con-
nected layer with parameters λ1 and λ2. Input dimensionality
are adapted with (R,Z) and output dimensionality is kept
same. Then, k minibatch samples are draw from the joint
distribution, i.e. (wJ1 , s

J
1 ), ..., (w

J
k , s

J
k ) ∼ PWS . Similarly, we

keep the same k samples from the marginal distribution PS ,
i.e. sJ1 , .., s

J
k ∼ PS , and draw k samples from the marginal

distribution PW , i.e. wM1 , .., wMk ∼ PW . The statistics
network gθ : W×Z → R parametrized by θ ∈ Θ is designed
to evaluate the lower-bound of mutual information as a real
number. Mutual information approximation is estimated by,

Iθ(W,S) =
1

k

k∑
i=1

oJi − log(
1

k

k∑
i=1

eo
M
i ), (4)

where

oJi = gθ(w
J
i , s

J
i ), and oMi = gθ(w

M
i , s

J
i ). (5)

In each training iteration, the gradient propagates through
the statistics and the mapping networks, and the parameters
[λ1, λ2, θ] are updated by the gradient of loss function

L = −(O
J

i − O
M

i

EMAMt
), (6)

where EMAMt is the exponential moving average (EMA) of
marginal sample outputs, i.e.

EMAMt =

{
O
M

t , t = 0

αO
M

t + (1− α)O
M

t−1, t > 1
(7)

where O
M

t is the moving average at iteration t and α
is smoothing coefficient. We optimize by simultaneously
estimating and maximizing the mutual information until
convergence as follows:

I(R,Z) = max
θ∈Θ

Iθ(W,S). (8)

Finally, Representation-Level Bias (RLB) B(R,Z) can be
given according to Def. 3.



TABLE I: Taxonomy of different bias metrics.

Taxonomy Usage Examples

Accuracy across cohorts R, Y
Standard deviation of accuracy [3, 13],
other metrics across cohorts
(ROC [15], AUC [38], F1 score [1]).

Information leakage Z, Y ′

Demographic Parity, Equality of Odds,
Equality of Opportunity [16],
Dataset leakage, Model leakage [39],
Bias amplification [45].

Estimated correlation R,Z
Dataset bias [28],
logits-level loss [20, 41].

Statistical dependence R,Z
Distance Correlation [34],
Representation-Level Bias (RLB).

IV. COMPARING BIAS ASSESSMENT METRICS

Having introduced RLB, we will theoretically discuss the
advantages of RLB compared to several representative bias
assessment metrics at the logits level. Table I summarizes
the comparison.

A. Information Leakage Fairness Criterion

Information leakage-based metrics assess bias by measur-
ing information leakage from Z to Y ′. For example, Demo-
graphic Parity, Equality of Odds, and Equality of Opportu-
nity [16] use independence between protected attributes Z
and prediction logits of labels Y ′, which are commonly used
as the strict definition of fairness for data-driven classification
models. Demographic parity (DP) requires the classification
to be independent of protected attributes. Specifically, be-
sides the predictor P estimating Y as accurately as possible,
an additional adversarial network G is introduced to predict
a value for Z from Y ′. DP is achieved when limiting any
information about Z leaking to Y ′. However, as argued
in [10], DP has two limitations. First, the fairness may
not be completely ensured under DP since the logits-level
parity can arise naturally with little training data of zi. By
contrast, representation-level DP does not arise naturally
since it is an ideal criterion which requires independence
of high-dimensional learned representations and protected
attributes, which is naturally unattainable in practice. Further,
in contrast to Z, R are high dimensional vectors with much
higher capacity to tolerate noise than predicted labels Y ′

in original demographic parity. Second, DP may harshly
forbid some correct predictions if they violate the criterion
in general, which hinders achievable better classification
accuracy. The failure case of pursuing DP is that some correct
predictions may be forced to be incorrect since DP requires
strict probability equality across cohorts. Further, compared
to the harsh DP, RLB is a soft metric.

B. Correlation Estimation

Correlation estimation-based metrics assess bias by esti-
mating the correlation between R and Z using a shallow
network. As mentioned in [41, 20] to assess model bias
by logits-level loss, they try to estimate the correlation by
training a mapping M from the family of shallow predictors
Pψ parametrized by ψ ∈ Ψ such that Zl ≈ M(Rk),
where M ∈ {Pψ}ψ∈Ψ, Rk is the learned representation with
dimension k and Zl is the protected attributes with dimension
l (l < k). Model bias can then be assessed at the logits level
by minimizing the loss or maximizing prediction accuracy

from the predictor Pψ̂ that learns to predict Z from R, with
parameters ψ̂ such that

ψ̂ = argmin
ψ∈Ψ

Loss(Pψ(R
k), Zl). (9)

However, this correlation is unstable and capricious since,
the predictor Pψ̂ with parameters ψ̂ is easily trained as a
projection from Rk to Z l, i.e. from a high dimensional space
to a low dimensional space.

Furthermore, we may arbitrarily construct a spurious or
uncorrelated representation space R̃k with the same dimen-
sion k as real representation space Rk to confuse the shallow
network Pψ , as shown in Section V-A. The confused shallow
network may also find a correlation between R̃k and Z l such
that Zli ≈ M̃(R̃ki ), where M̃ ∈ {Pψ}ψ∈Ψ. Unfortunately,
the spurious mapping M̃ would offer a minimum loss or a
maximum prediction accuracy as the degree of bias even for
the uncorrelated representation and protected attributes.

By contrast, the principal idea of RLB is that the correla-
tion between R and Z should be independently estimated by
mutual information, instead of a neural network in [41, 20].
The drawback that an auxiliary neural network in logits-
level loss may produce spurious correlations is addressed
by mutual information lower-bound estimation, for which
consistency of the Donsker-Varadhan representation and the
network parameters choice over {θ ∈ Θ} for MI supremum
in (3) are proved in [5]. The limitation of logits-level loss
using a neural network predictor is a preconceived latent
assumption that the correlation is determined by a mapping
M as a neural network with a specific architecture and
parameters, such that Zl ≈ M(Rk) where M = {Pψ}ψ∈Ψ.
By contrast, using mutual information, we do not care about
what the mapping M is explicitly so that we can relax
the mapping M of Z from R without regarding it as a
specific neural network. Furthermore, the neural network in
RLB initializes with the lowest estimated bias, and in each
iteration, strives to increase it by exhaustively traversing
different mapping functions Tθ, as shown in Fig. 3a. The
curve eventually converges to the greatest estimated bias
which is approximately the lower bound of the actual bias,
which explains the fact that, in Table II, the estimated bias
stays at the lowest point with synthesized representations.
Contrastively, there is no lower-bound guarantee for the
logits-level metrics based on the prediction accuracy or
logits loss so that it may exceed the actual bias.

Fig. 2: Examples of Colored MNIST, moderately biased (top) and extremely
biased (bottom).

V. EXPERIMENTAL EVALUATION

Prior work [44, 38, 6] argues that any bias assessment met-
rics must be capable of evaluating both dataset (im)balance
and model bias. Therefore, we empirically demonstrate that
our independent bias assessment metric at the representation
level is more effective than other bias assessment metrics at
the logits level in these two aspects with experiments on (1)



(a) Convergence lines of mutual information es-
timation.

(b) Bias assessment of testing dataset with
different standard deviations.

(c) Bias assessment of testing dataset with the
fixed standard deviation.

Fig. 3: Verification experiments on Colored MNIST Dataset.

Colored MNIST [26], (2) FairFace [21], (3) CelebA [29],
and (4) synthetic datasets generated by StyleGAN2 [23].
First, a number of synthesized representations are used to
test the robustness of our method compared to the estimated-
correlation metrics, i.e. logits-level loss [41, 20] in Section V-
A. Second, we verify that our method outperforms another
estimated-correlation metric, i.e. dataset bias [27, 28] and
a statistical-independence metric, i.e. distance correlation
dcor2 [34] by showing different bias scores for imbalanced
datasets in Section V-B and reflecting the model bias at the
representation level, which is further demonstrated in Sec-
tion V-C and Section V-D. Finally, we show that RLB is
generic and capable of evaluating different debiased models
compared to the methods based on accuracy across cohorts,
information leakage, i.e. bias amplification (BA) [45] and
statistical dependence, i.e. dcor2 [34] in Section V-E.

A. Robustness Against Spurious Correlations

To verify the robustness of RLB and show that correlations
could be found between both true or spurious protected
attributes and both true or spurious representations, we in-
troduce several synthesized representations using the Aligned
& Cropped subset of CelebA dataset [29] since the learned
representations extracted from cropped images focus more on
demographic appearances (e.g. hair type, colors) and avoid
the interference from other features (clothes). First, we train a
ResNet-50 [17] to recognize attributes on CelebA dataset and
use the qualified network F to construct learned representa-
tion space R. Then, we introduce several synthesized repre-
sentations, including (1) RS , shuffling learned representation
over the feature dimension; (2) RG, generating unpaired
representations from a different but same-sample-size batch;
(3) ZS , shuffling protected attributes over the samples; and
(4) ZG, generating unpaired but overall-entropy-unchanged
protected attributes labels, to confuse the bias assessment
metric based on logits-level loss.

In Table II, we compare the proposed RLB with the logits-
level loss (estimated-correlation metric) for sex bias. The
results show that the correlations exist whether or not the
synthesized representations are applied. There is no discrimi-
nation capability for testing prediction accuracy since several
accuracy with synthesized representations approximate or
exceed the accuracy without synthesized representations.
Furthermore, the logits loss with synthesized representations
is expected to be at least greater than that without synthesized

representations since the spurious representation space R̃k is
fabricated at random and should be uncorrelated to protected
attributes space Z l. However, the logits-level loss is crude to
construct spurious correlations between unrelated samples.
On the other hand, as we add spurious correlations, RLB
declines, which means the correlation constructed by mutual
information only exists between R and Z instead of any
spurious representation space.

TABLE II: Comparison between correlations established by predictor and
mutual information.

Normal
RS RG ZS ZGCorrelation

Testing Acc. 99.7 63.8 99.9 92.3 99.8
Logits Loss 0.054 0.412 0.23e-05 0.179 0.026
Bias (Ours) 0.874 2.42e-05 0.34e-05 1.28e-05 1.09e-05

B. Colored MNIST

To obtain intuitive insights and demonstrate the effec-
tiveness of RLB for evaluating the (im)balance of training
datasets and capturing dataset bias, we conduct experiments
on a modified version of MNIST [26], Colored MNIST,
where assigned colors are sampled from digit-dependent dis-
tributions. Since the digits are tied up with the colors, color
classification can facilitate digit classification; and therefore,
Colored MNIST is biased with color representations and the
intensity can be controlled by the color assignment scheme.
The moderately biased case (assigning two colors to two
groups of digits) and extremely biased case (assigning ten
distinct colors to each digit) are shown in Fig. 2.
Experiment Setup. We introduce color bias by assigning
RGB colors zi = (ri, gi, bi) to each digit as the center
color and provide a standard deviation (STD) σ as its range;
therefore, the color spectrum covered by each digit is (ri ±
σ, gi±σ, bi±σ). Increasing the STD σ reduces bias since a
larger STD will produce more overlap between the colors of
different categories, thereby reducing the discriminability of
colors. We train a LeNet-5 CNN [25] to recognize digits on
Colored MNIST training set with different STDs σ(i)

train and
use the qualified representation learning networks F

σ
(i)
train

to
construct learned representation space R for representation-
level bias assessment usage on the testing set with both
different STDs σ(i)

test but same with training data and a fixed
STD σtest = 0.5. Experiments with different STDs in testing
data demonstrate that our method reflects the degree of bias
in dataset, and other experiments with a fixed STD verify



that the estimation of mutual information reflects bias in the
trained model since the color entropy of the testing data is
same, i.e. the denominator in (1) is same and the bias issues
can only come from different biased models trained with
different STDs.
Results. Fig. 3a shows that MI estimation, for a training
dataset with different STDs and a testing dataset with a fixed
STD, converge as several straight lines. Fig. 3b shows that
in the case that the STD of training and testing datasets are
similar, both dataset bias [28] and RLB decrease as the STD
increases. However, dcor2 does not yield this trend in high
STD since it only considers model bias without a correction
of dataset bias. In Fig. 3c, the decrease of dataset bias [28]
with the increase of STD does not happen with a fixed STD
σtest, and in nature it only assesses the bias from testing
dataset with σtest = 0.5. On the other hand, the bias in the
trained model is reflected in the representations of the testing
dataset and captured by RLB as increase of the STD σtrain
of training dataset reduces RLB.

(a) Sampled FairFace datasets. (b) Synthetic datasets.

Fig. 4: Representation-level bias for sex and race.

C. FairFace Dataset

Sampled datasets from FairFace dataset [21] are used to
assess the bias induced by imbalanced datasets and explain
the discrepancy due to imbalanced training [2, 37].
Experiment Setup. We emulate sex and racial bias by
controlling female percentage sfi in all sex attributes or black
race percentage rbi among all race attributes (Black, White,
Indian and East Asian in this experiment). Approaching a
balance point (sfi = 0.5 and rbi = 0.25) reduces the bias
since more balanced datasets imply less bias. We train a
ResNet-34 [17] to recognize identities on sampled FairFace
datasets with different sfi and use the qualified representa-
tion learning networks Fsfi to extract representation R for
representation-level bias assessment usage. Further, a dataset
considering imbalance of multiple protected attributes, which
is similar to other imbalanced datasets [29, 30] and the real
world demographic distribution, is sampled based on sfi and
a specific race percentage ri, such as black race percentage
rbi . Meanwhile, the other races are sampled equally.

Fig. 5: Three-stage experiment pipeline of Synthetic datasets.

Results. The results of RLB considering multiple protected
attributes are shown in Fig. 4a, as a basin shape in 3-D
space, with the lowest RLB when sf = sm = 0.5 and
rb = rw = ra = ri = 0.25, which is desired since the

dataset is balanced in both race and sex at these percentages.
Furthermore, Fig. 4a shows that the projection curve of the
basin shape in the female percentage plane is a V curve,
but the projection curve in the black race percentage plane
is flatter, which means that changes in female percentage
has a stronger effect on RLB than changes in black race
percentage. This difference is also desirable since female
percentage of two sex groups may lead to greater imbalance
than black race percentage of four race groups.

Fig. 6: Examples of Synthetic datasets.

D. Synthetic Datasets Generated Using StyleGAN2

Due to the insufficiency of samples after splitting by
several protected attributes, existing datasets may not be
sufficient. Inspired by [4], we propose a new synthetic dataset
generated by StyleGAN2 [23] with a more complicated dis-
tribution, to facilitate experimental rather than observational
analyses of the presented method.
Experiment Setup. We simulate the degree of bias by
assigning the entropy of protected attributes, such as sex
entropy Hs

i = −[P (zf )logP (zf )+P (zm)logP (zm)] where
P (zf ) is the percentage of female in the whole dataset.
Next, given a source S0 from which the generated images
are distinctive and high-quality, and a source S1 with four
manually selected latent vectors as representatives for races,
inside StyleGAN2 [23] pretrained on FFHQ [22], the map-
ping network f produces e(i)0 and e

(j)
1 from u

(i)
0 ∈ S0 and

u
(j)
1 ∈ S1, and the synthesis network p generates an image
Iij by taking e

(i)
0 at coarse spatial resolution (42 − 82) to

bring high-level appearances (hair style, face shape) from
S0, and e

(j)
1 at fine spatial resolution (162 − 10242) to

obtain racial appearances (colors of eyes, hair, skin) from S1.
Further, we generate a specific dataset according to the preset
entropy. Finally, we train a ResNet-50 [17] on generated
datasets with different sex entropy Hg

i or race entropy Hr
i

to construct learned representation space R for evaluating
our representation-level independent bias assessment on the
balanced testing set with Hg

i = 0.693 and Hr
i = 1.386 at the

balance point. We use skin color as a proxy to race in this
experiment, same as Pilot Parliaments Benchmark (PPB) [6].
The end-to-end three-stage pipeline is shown in Fig. 5.
Results. As shown in Fig. 6, benefiting from mapping net-
work to reduce feature entanglement, the generated images in
different races maintain the similar appearance with different
skin tone, which mitigates interference of appearance. A few
observations can be drawn from the Fig. 4b. First, RLB
declines as the entropy increases. According to the definition



(a) Bias (bias amplification [45]). (b) Distance correlation [34]. (c) RLB (MI baseline). (d) RLB (adding mapping network).

Fig. 7: Debiasing performance comparison of debiasing models on CelebA Dataset using box plots.

TABLE III: Debiasing performance comparison of debiasing models on CelebA Dataset.

mAP Bias (BA [45]) dcor2 [34] MI / RLB (Ours)
Female Male Overall Sex Sex Sex

Baseline 75.8 72.2 74.3 0.714 0.697 0.636 / 0.954
Strategic sampling [28] 75.4 72.3 74.1 0.712 0.672 0.628 / 0.942
Representation disentanglement [12, 2, 19] 73.1 70.2 71.9 0.708 0.659 0.620 / 0.929
Domain adaptation [38, 15] 74.7 72.5 73.8 0.707 0.643 0.612 / 0.918
Domain independent training [40] 76.5 76.1 76.3 0.702 0.578 0.553 / 0.829

TABLE IV: Debiasing performance comparison of debiasing models on FairFace Dataset.

Accuracy Bias (BA [45]) dcor2 [34] MI / RLB (Ours)
Black White East Asian Indian Overall Sex Race Sex Race Sex RaceF M F M F M F M

Baseline 79.3 79.2 84.2 88.2 80.4 80.3 79.1 81.2 81.3 0.510 0.259 0.573 0.314 0.480 / 0.693 0.762 / 0.550
Strategic sampling [28] 80.5 80.3 83.7 86.4 79.5 79.6 79.2 81.1 80.7 0.508 0.257 0.552 0.309 0.468 / 0.675 0.757 / 0.546
Representation disentanglement [12, 2, 19] 78.6 78.5 82.5 84.5 78.5 78.6 78.1 79.3 78.6 0.505 0.255 0.546 0.286 0.448 / 0.646 0.736 / 0.531
Domain adaptation [38, 15] 80.7 80.6 83.9 85.6 79.7 79.8 79.9 80.1 79.8 0.504 0.255 0.531 0.281 0.437 / 0.631 0.729 / 0.526
Domain independent training [40] 82.5 82.4 85.3 87.1 82.5 82.5 82.3 82.5 83.5 0.501 0.253 0.478 0.247 0.361 / 0.521 0.658 / 0.475

of entropy, larger entropy implies a more balanced dataset,
and therefore, RLB is consistent with degree of imbalance.
Second, compared to sex entropy, race entropy has a stronger
influence on RLB.

E. Comparison With Debiased Models

Inspired by [40], we compare bias assessment metrics
on four mainstream families of debiasing methods — (1)
strategic sampling, (2) representation disentanglement, (3)
domain adaptation and (4) domain independent training, with
BA [45] and dcor2 [34]. The ResNet-50 [17] pre-trained on
ImageNet [8] (as baseline model) is used to predict attributes.
We assess RLB of sex on CelebA dataset and both sex and
race on FairFace dataset. Mean average precision (mAP)
across cohorts is also presented as metric comparison for
this multi-label classification.
Results. In order to illustrate the ability to capture model
bias, the degree of imbalance of testing dataset is kept same,
i.e. sex entropy of CelebA dataset is 0.667, sex entropy and
race entropy of FairFace dataset is 0.693 and 1.386. Besides,
mutual information estimation (MI) corresponding with RLB
is separably presented as ablation study of bias assessment
with and without entropy. In Table III and Table IV, de-
biasing models are compared across rows and metrics are
compared across columns. The results show that domain-
independent training [40] performs the best with the most
balanced mAP across all cohorts. In order to present variation
and mean of different metrics in a more straightforward way,
we conduct experiments with 50 different random seeds and
calculate statistics of different metrics for sex bias in CelebA
dataset [29] using box plot, as shown in Fig. 7. Comparing
Fig. 7a with Fig. 7d, we find that the confused four groups
under BA [45] are clearly distinguished under RLB due to
a larger range which can be used to stratify different degree

of bias from more models without aliasing. Furthermore,
comparing with dcor2 in Fig. 7b, RLB assesses sex bias
with small variation. Also, comparing Fig. 7c and Fig. 7d,
RLB (adding mapping network) yields smaller variation and
more robustness than MI baseline. Theoretically, different
metrics for demographic bias construct a metric space rather
than a normed space since there is no definition of zero
point. Furthermore, in the absence of standard unit of bias
and proper conversion between different metrics, we need
to consider the absolute value instead of the relative value
and the advantages (clear discrepancy and small variation)
of RLB demonstrate a better precision.

VI. CONCLUSION

We present a bias assessment metric to assess demographic
bias in face recognition at the representation level and
empirically demonstrate that RLB reflects the bias issues
induced from imbalanced datasets and biased models. Our
results show that the conclusions of previous work that use
mAP across cohorts, BA and dcor2 show large variation
and may produce contradictory bias assessment scores when
comparing more debiasing models since these metrics have
not yielded clear discrepancy. Furthermore, the conclusions
of prior work that use logits loss to evaluate debiasing per-
formance may be inaccurate since spurious correlations may
lead to inaccurate logits-level metrics. On the other hand, our
independent representation-level bias can be not only used
to evaluate the overall performance for bias mitigation, but
also used to detect bias inside debiased models, which allows
a more flexible and wider-range usage for studying bias in
classification models.
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